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Abstract. It is shown that for a (D + I)-dimensional scalar field system with an a r b i m  
potential whose Fourier representation exists in the sense of tempered distributions, the effective 
potential and multi-particle-state energies by the Bogoliubov transformation technique are 
identical to those calculated by the Gaussian wavefunctional approach. However, the Bogoliubov 
transformation technique differs from the latter as it can be applied to quantizing a static soliton 
without difficulty. 

1. Introduction 

Bogoliubov transformation [ l ]  is a unitary transformation from one vacuum to another. 
With the aid of this technique, the transformed vacuum, a non-perturbative vacuum, has 
been defined to investigate vacuum structure or phase transition of many models in (1 + 1) 
dimensions, such as the Thirring model [2,3], the Gross-Neveu model [4,5], QED+NJL 
model [6], massive Schwinger model [7], the O ( N )  nonlinear a model [SI, and the sine- 
Gordon model [9,10]. In the meantime, the Gaussian wavefunctional approach (GWFA) 
[11,12] has also been used to discuss vacuum structures, bound states, scattering phase 
shifts, solitons and phase transitions in various models-the scalar, Fermi and gauge fields 
or their interactions [13-211. Recently, the equivalence between these two methods has been 
shown by calculating the effective potential or one- and two-particle excited-state energies 
in the (1 + 1)-dimensional model [Z] and in the (D + 1)-dimensional sine-Gordon and 
sinh-Gordon models [ZZ]. 

In this paper, we intend to compare the above two methods by considering a relatively 
general model with the Lagrangian density 

(1) 

where 4z q4(z), and the potential V(&)  has a Fourier representation in a sense of 
tempered distributions [23]. The potentials of many models, for example the various 
polynomial models and the sine-Gordon and sinh-Gordon models, have this property. 
We shall calcuiate the effective potential, one- as well as two-particle energies for 
equation (l), and generalize the Bogoliubov transformation technique (BTT) to the non- 
uniform background case. We find that the results of the above energies from the BTT are 
correspondingly identical to those from the GWFA. One can also see that in the framework 
of each of these two methods the different models have almost the same expressions for 
some physical quantities. However, although there is a weak point when a non-uniform 
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background field is introduced into the GWFA 1203, the drawback disappears when one 
employs the BTT. 

We shall first use the BTT in section 2, and then the GWPA in section 3 to evaluate the 
effective potential one- and two-particle energies for system (1). In section 4, we discuss 
the non-uniform background case. Finally, we shall discuss our results. 

2. Bogoliubov transformation technique 

In the functional Schrodinger picture, the Hamiltonian operator corresponding to equation (1) 
reads 

with qL the quantum counterpart of the field, n, = -i& conjugate to @x, [, [ dDx = 
1 d r l  dxz . . . d x ~ ,  and V the gradient operator in  D-dimensional =-space. The fundamental 
operators c # ~  and n, can be expanded in terms of creation and annihilation operators based 
on the naive vacuum IO) with respect to the bare mass parameter m in equation (2) without 
an interaction as 

112 

(3) #z = j dDp [ ] [a@, m)e+z +at@, m)eip”] 
2 z ) D  2w(p9m) 

and 

wherep represents a D-dimensional vector, p = Ip/, o ( p ,  m) = w, a@, m)10) = 0 
and [a@, m), at@’, m)] = S@ - p’). 

Employing the Bogoliubov transformation, one can define the new operators 

(5) 

t with U = U ]  U,, where Uj = exp(Aj - A j ) ,  A J ( j  = I ,  2) being 

Here the parameters g@) and e@) are real parameters to be determined. One can check 
the equal-time commutation relation 

Ib@),b’@’)l = S @ - P ’ ) .  (8) 
Obviously, the inverse of equation (5 )  is 

(9) 
a@, m )  cosh[B@)] sinh[B@)] b@) J G g ( P )  [ at(-p,m)] = [ sinh[0@)1 cosh1@@)l] [ bt(-p)] + [ Jk&,)] ’ 
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The unitary operator U can transform the bare vacuum 10) into a non-perturbative trial 
vacuum [2], the Bogoliubov vacuum, 

16) = UjO) = U,U2~0) (10) 
where g(p) and B ( p )  will be regarded as variational parameters and determined by 
variationally extremizing the expectation value of H in 16). The translational invariance 
requires that g(p) and Q(p) are even functions of p. Although a@, m)l6) # 0, it is evident 
that b(p)l6) = 0. Therefore, from equation (S), bt@) is the creation operator of a quasi- 
particle with the momentum p. 

For IC), one can easily evaluate 

(61 P 16) = 0 

where k = -J, rlXV&  is the total momentum operator of the field system (1). 
Equation (12) indicates that g@) is the Fourier component of the vacuum expectation 
value of &. Thus U ,  plays the role of shifting the field system. In order to obtain the 
effective potential, we take g@) = 98@), and so 

( 6 l m  = 9 (13) 
with rp the uniform background field. 

[11,24,12]. For instance, one- and two-particle states can be defined separately as 
Acting on the vacuum 16) by b t b ) ,  one can manufacture multi-particle excited states 

11) = bt(P)16), (14) 

12) = / dDpC@)bt@)bt(-P)I6), (15) 

where C(p) is the wavefunction in the momentum space and the subscript r means the 
vacuum is a renormalized one. ~ , 

According to Coleman's normal ordering prescription [25,26], we normal-order X x ,  
with respect to the normal-ordering mass Q, as 

and 

NQ[%.rI = + f(v'$x)2 - $ J [ &  +NQ[V($x, ) l  

with 

Using equations (3), (4), (R), (9). and (13), one has 

In order to calculate (6lN~[V(&)]l6), we make the Fourier transformation (at least in 
the sense of tempered distributions) 
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Noticing the Baker-Haussdorf formula 

(18) 
eA+B = eAeBe-f[A.Bl 

with [A, B] some c-number, and the integral J," $e-u2x2 dr = 1, we arrive at 

where 

1[e1= (cosh[B(p)] t sinh[8(p)])z (20) 

I IQZ]  = / dDp 1 

+'/ d D p L ( c o s h [ 8 @ ) l  -I- ~inh[8(p)])~ - -JIQ2]  1 

and 

(2n)D q," 
Collecting equations (16) and (19), one has the energy density of  16) 

1 dDp  
81 = (~INQ['H,II~J) = E 1 ~ d p ,  m)(cosh[6'@)]- ~inh[6'@)])~ 

n)D 

4 ( 2 ~ ) ~  o ( p , m )  4 
m 

(21) 

Minimizing the energy density with respect to the function e@), we obtain 

p z  t mz 
PZ + W 9 )  (22) wp, 9)  = in 

where 
m 

da e-aZ/4v(z) ( % J I [ M ~ ( ~ ) ]  - l [ Q Z ]  + 9 )  (23) 

(24) 

with 
dRV(z) V ( K ) ( ~ )  = - 2 Sw - E ( i n ~ ~ ( n ) e i ~ z  

dz" -m .Jz;; 

r[ei = UM*WI = 

the dependence upon cp being imposed on the Bogoliubov angle 6'4). Hence, equation (20) 
becomes 

(25) 
dDp 1 

2nP J" 
Consequently, the effective potential, defined as the minimized energy density, is 

1 
v(9) = ;(JlM2((o)l - JlQ21) +Im drue-u2/4V ( ; J W 2 ( 9 ) ]  - I [ Q 2 ] + o ; ) .  (26) 

-m 2 4 5  
Furthermore, the same calculations can be done for the states 11) and 12), and SO one 

finds the one-particle energy 
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as well as the two-particle energy 

where 

and rpo corresponds to From equation (27), one can see that Mz(qo) is just the mass 
of a quasi-particle. Moreover, the two terms in equation (28) can be interpreted as the 
kinetic energy of the two constituent particles and their interacting energy, respectively. It 
is evident that the signs of U ( ~ ) ( P ~ )  determine whether the interacting force between two 
particles is attractive or repulsive, and when d4)(qO) = 0 in equation (28) there are no 
interacting effects between the two particles. One perhaps has also noticed that the further 
analysis of equation (28) can give the two-particle bound-state mass and the scattering phase 
shifts [IS, 191. 

3. Gaussian wavefnnctional approach 

For~the GWFA, the vacuum ansae reads [14] 

where Tx, 'px and fxs are the variational parameters. N, is some normalization constant, 
and depends upon fxy. Due to the translational invariance of the vacuum, it is necessary 
for f&= fJx. Besides, the inverse f;Y' of fxy has to exist, i.e. 

must be true. It is easy to show 

(Pl4xlP) = Px 

and 

Making the Fourier transformation 

and using functional integration technique, one can easily evaluate 
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Thus, the energy density of iq) is 
1 1 1 

8[9. P ,  f 1  = (dNQ[%]bP) = s’p: 4- y(vrp,)2 - ; J [ Q 2 ]  f 

(37) 

Taking fpX =constant = q? and minimizing the energy density with respect to the function 
P, and f@). respectively, we obtain P, = 0 and 

f@) = m (38) 
with 

(39) 
m 

Here, 
I 

= I[lr2(ul)l. 

Hence, the effective potential is 
1 m 1  

V W  = ~ ( J [ c ~ ~ ( c o ) l -  J[Q21) + /” - m ~  d~-e-‘~/~V 2J;i ( ~ J I [ p 2 ( v ) I  - UQ21 + q )  . (40) 

In order to construct the excited states, following Barnes and Ghandour [24], one can 
manufacture the annihilation and creation operators with respect to the renormalized vacuum 
Ipo) of the trial vacuum Iq) 

(41) 

and 

(42) 
1 

Then, multi-particle excited states can be constructed by A:@) acting on I%), such as the 
one-particle state 

11) = A)@)lvo) (43) 
and the S-wave two-particle state 

12) = /dDpW)A:@)A:(-p)16p) (44) 

where C(p) is the Fourier transformation of the S-wave function of the two particles. 
Consequently, one finds the energy of the one-particle 

m =  f@) = GTFG (45) 

and the energy of the two-particle system 

Now we have briefly given the effective potential, one- and two-particle energies for 
model (1) by the GWFA. Obviously, these expressions are correspondingly identical to those 
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obtained by the BTT in the previous section. Note that for D c 3 these expressions have no 
divergences, because the integrals J[M2((o)]-J[Q2], I [ M 2 ( p ) ] -  I[Q2], J[p2($7)]--J[Q2J, 
and l[/12($7)]-I[Q21 are all finite for D i 3. Consequently, the BlT gives the same physical 
results as the GWFA. 

By way of explanation and justification, we now consider the general q46 model with 
the potential 

(47) 
1 2 2  (4%) = aB$x f p & x  f gB$: + AB@: f c4: 

and the sinh-Gordon model with the potential 
m2 

VZ(&) = ~ I C O ~ ~ ( Y & )  - 11 (48) 

which is that  of the sineGordon model when y 2  = -,5", using formulae (23), (26), (27) 
and (28). In the sense of tempered distributions, VI (&) and V2(&) have their own Fourier 
representations 1231. For the $6 model, noting that 

Y 

one can have ( I  I[M2(rp)J - I[Q2], J = J[M2(rp)] - J[Q2]) 
M2($7) = m i  f 6 g ~ ' p  f 12hB($I f $7') f 30e(rp4 + 311p2+ $i2) 
~(~ ' (m)  = 2 12[hs + I5[(41 +pi)] 

(49) 

(50) 
and 
v(9) = ~ J f a B $ 7 f f m , ( q 1 f $ 7 2 ) + g B ( 2 1  1 2 1  + $ 7 3 ) f h g ( ~ 1 Z f 3 1 $ 7 2 f @ 4 )  

, .  

(51) 
Substituting equation (49) into equation (27) and equations (49), (50) into equation (28) can 
give ml and m2, respectively. When 5 = 0 and D = 3, equation (51) is the same as in 
equation (5) in [271 if I is replaced by l[M2(rp)] and J by J[M2(rp)]. In [2n, equation 
(5) is unrenormalized. In the above, if I is replaced by 1[MZ($7)1 and ./ by J[M2(rp)], 
the results are unrenormalized ones, too. Thus our formulae can give the same results as 
in [271. Furthermore, the above V(rp), ml and m2 are also reduced to those in [28] for 
ae = gB = 0 and in 121 and 1131 for ae = = 0. As for the sinh-Gordon model, we 
have 

+ B ( $ I ~ + ~ I  4s 2 $7 2 + ? I ,  4 z  +v O 6  1. 

= 

d4)(rp0) = m 2 y 2  exp 

and 

(53) 

(54) 

From equations (27), (28), (52) and (53). one can have ml and m2 for the sinh-Ciordon 
model. These results (with some extra algebraic treatments) are identical to those in 
[14,19,22]. 

Throughout section 2 and this section, we have generally shown the equivalence between 
the B?? and the CWFA. This can be understandable, for the ansatz (IO) is indeed the 
Gaussian-type state analogous to equation (30). Therefore it is not difficult to see that 
this agreement also occurs at the other multi-particle energies and may remain valid for 
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the theories concerning the Fermi and gauge fields. In this paper we shall not continue 
to discuss them. Instead, in the following section, we shall extend the BTT to the non- 
uniform background. By the way, section 2 and this section have already shown that in the 
framework of the B T r  (or GWFA), different models will have almost the same expression for 
m, or m2. 

4. Non-uniform background 

In this section we introduce a non-trivial background field into the BTT for it to be used in 
quantum solitons or instantons, and we are only interested in the ground-state case. 

In fact, this extension is straightfonvard. One can set 

c6l@xia, = 'px (55) 

instead of equation (13). i.e. g(p) is regarded as the Fourier component of 'px. This 
only results in replacing the constant p by the space-dependent function px in section 2, 
except for adding the extra term 4(Vqx)' to equations (16), (21) and (26). Nevertheless, 
the variationally-extremized procedure with respect to 0 makes 8 in equation (5)  space- 
dependent, i.e. 9(p) + 8(p, x). Owing to the space dependence of 8, b@) and bt@) 
became space dependent, and so one has the relation 

[bOp,s),btOp',x')] = (cosh2[eOp,x)1 -sinhZ[8@',i')])6@-p'). (56) 

This appears to bring about an inconsistency in the calculations implemented before the 
variationally-extremized procedure, i.e. it appears that by substituting g@) in equation (55) 
and 9(p, z) into equation (5) and re-calculating the energy density, one should obtain a 
much more complicated expression than equation (21), instead of the above-mentioned 
result which is analogous to equation (21). Fortunately, in the course of calculating the 
energy density, one encounters only the commutator [b(p, x), bt(p', x)], which is 6(p-p') .  
Hence, the energy can be read as 

the integrand of which still resembles equation (26). Thus, the spatial dependence of the 
background field would not hinder our generalization, though 9 is only regarded as a function 
of momentum p in the original ansatz (10). 

Minimizing EO with respect to (pr or g(p), we obtain the static equation 

This equation is just the static version of equation (2.37) in [29]. It can be used for 
quantizing a static soliton or an instanton in (D  - 1) space dimensions. 

As an example, we consider the sine-Gordon model (the potential is Vz(&) with 
yz = -82) 

(59) 
1 in2 

L, = z a w @ a v z  + ,[COS(B@~X) - 11 B 
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where m and ,9 are the bare parameters. According to equation (58), one has 

In (1 -t. 1) dimensions, we get 

with m: = MZ((ox = 0). This is simply equation (6) in [30] (static case). 
In the last two sections, we have seen the equivalence between the BIT and the G W A  in 

a constant background. However, in the space-dependent background, the BTT seems better 
than the GWFA.~As was pointed out~in [ZO], as in the last section, the variationally-minimized 
step in the GWA imposes a (ox-dependence on the Fourier component f (p) of the quantum 
fluctuation fxr and so f (p) will become space-dependent. Consequently, equation (31) no 
longer holds rigorously [ZO]. Nevertheless, whether equation (31) holds or not is just a 
question of whether the generalization of the GwFA to a non-uniform background is self- 
consistent. Regardless of this problem, after the minimized step, if one continues to advance 
with the GWFA, then no further difficulties will appear and the generalization of the G W A  
to a non-trivial background field will give the same results as the BIT. For instance, Ni et al 
[20] using the GWA, obtained the same equation (60) for the sineGordon model. What is 
more beneficial, in [20] the authors found that equation (31) is approximately viable for a 
non-trivial background field. Of course, strictly speaking, the GWFA is difficult to embrace 
a non-uniform background field, because in this case equation (31) does not hold after all. 
This point may reflect the difference between the field-configuration-space formalism and 
the Fock-space formalism. We feel that the BTT can be regarded as the Fock-spatial version 
of the GWFA and so there is no equation (31)-like requirement for the BIT. Therefore, the BTT 
effectively avoids the difficulty of generalizing the GWFA to the non-uniform background 
case. 

5. ConiIusions 

In this paper, we have compared the B I T  with the CWFA by calculating the effective potential, 
one- and two-particle energies of the model (I), and generalizing the BTT to the non-trivial 
background case. In the constant background field case, both of the methods are equivalent 
to each other. For the space-dependent background, the B I T  is more acceptable than the 
GWFA. It should be emphasized that the results in this paper are valid for those models 
in which the potentials have Fourier representations in the sense of tempered distributions. 
Therefore when such a model is investigated with the BTT or the GWFA, it is enough to 
directly employ the formulae in this paper, which will greatly simplify the calculations. 
As in the time-dependent generalization of the GWFA [31-341, the BTT can be directly 
generalized to a time-dependent formalism. 

Finally, we would like to mention that in section 2, when 19) takes the place of IO), 
the results do not change at all. This shows that if some Hermitian operator 0 is only 
linear or quadratic in the fields a's and their conjugate iTs ( A j  in equation (5) is similar), 
the unitary transformation of the Gaussian wavefunctional [(o), i.e. e-'"Ol(o) (s is some 
parameter) does not produce non-Gaussian wavefunctional, which is consistent with that 
pointed out in [35]. Furthermore, take g(p) = 0 and A2 = .O, and truncate the operator 
exp(/dDpO(p)at(p, m)af(-p, m ) ) ,  one can obtain the BCS-type vacuum state j36.371. 
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Thus, from the aforementioned discussion, one can see that the BCS-type vacuum state may 
not lead t o  new results; however, generally this is so [36,37]. 
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